Harpocration and the $\Sigma v \nu \alpha \gamma \omega \gamma \dot{\eta}$

Ian C. Cunningham

1. The Problem

The only surviving work of Valerius Harpocration, Alexandrian $\dot{\rho} \dot{\eta} \tau \omega \rho^{1}$ or $\gamma \rho \alpha \mu \mu \alpha \tau \kappa \kappa{ }^{\prime}{ }^{2}$ of the later second century, ${ }^{3}$ is the $\Lambda \epsilon \xi ⿺ \kappa \dot{o} \nu$ $\tau \hat{\omega} \nu \delta \epsilon \in \kappa \alpha \dot{\rho} \eta \tau о ́ \rho \omega \nu$, an alphabetical elucidation of words and phrases and especially names of persons and places in the canonical Attic orators. ${ }^{4}$ The full form of this text seems not to have been known in Byzantium till the thirteenth century. ${ }^{5}$ But an epitome, perhaps made in late antiquity, was available. It is independently extant in three manuscripts: E of the thirteenth century, D of 1496, and T (a copy of E) of $c a 1540 .{ }^{6}$ Much earlier than any of these was the copy or copies used by one or more expanders of the $\Sigma v \nu \alpha \gamma \omega \gamma \eta \lambda^{\prime} \epsilon^{\prime} \xi \epsilon \omega \nu \chi \rho \eta \sigma i \mu \omega \nu$.

This protean $\Sigma \nu \nu \alpha \gamma \omega \gamma \eta^{\prime}$ (hereafter Σ) cannot be ascribed to any one compiler or to an exact period, but it belongs to the revival of interest in scholarly matters commonly known as the first Byzantine renaissance, i.e., to the very end of the eighth or the first half of the ninth century. ${ }^{7}$ The terminus ante quem is the date of the lexicon of Photius, but that is by no means certain; 830 to 850 are the probable limits. ${ }^{8} \Sigma$ began as an expanded version of the lexicon of Cyril, an elementary compilation of glosses on the Bible, Homer, Euripides, and other well-known texts, probably by the fifth-century archbishop of Alexandria. ${ }^{9}$ In this form it exists in Paris Coisl.gr. 347 (A, 9th or

[^0]10th cent.) and, apart from the letter α and a few additions elsewhere, in Paris Coisl.gr. 345 (B, 10th cent.), and also with later interpolations in Berlin gr.qu. 13 (C, 15th cent.; now in Cracow, Bibljoteka Jagiellonska). ${ }^{10}$ It later underwent great expansion in several stages, by which glosses from the following sources were incorporated: Apollonius' Lexicon Homericum, fuller versions of the rhetorical lexica printed as the fourth and fifth items in Bekker's Anecdota graeca $\mathrm{I},{ }^{11}$ glosses on Plato from Timaeus and elsewhere, Atticistic lexica (Aelius Dionysius, Pausanias, Phrynichus, the Antiatticist, perhaps Orus), Diogenianus, and Harpocration. It is not to be supposed that the original ancient works were utilised, but rather as with Harpocration epitomes, extracts, and compilations, and these probably gathered in only a few manuscripts. ${ }^{12}$ Each of our three sources for this "erweiterte Σ " (as Wentzel called it)-B, ${ }^{13}$ the Suda ${ }^{14}$ and Photius ${ }^{15}$-has a different selection of these additions: the principal groupings are B Suda Phot., Suda Phot., and B Phot. The most economical explanation of this is that there were three stages of expansion, $\Sigma^{\prime}, \Sigma^{\prime \prime}$, and $\Sigma^{\prime \prime \prime}$, the two latter being based on the first; Suda used $\Sigma^{\prime \prime}, \mathbf{B}$ used $\Sigma^{\prime \prime \prime}$, and Phot. used both. This is clearer in the diagram at the top of page 207. ${ }^{16}$

The much smaller number of coincidences between B and Suda are to be explained by omission in Photius, either by Photius himself or (more likely) in the course of the transmission of his lexicon, as the

[^1]
manuscripts are relatively late and have been subjected to abbreviation. ${ }^{18}$ The possibility that glosses that now appear only in one of them came from one or other forms of Σ and were omitted in the rest of the tradition is frequently present but can rarely be proved. All three also had other sources.

It is obvious that only in α, where \mathbf{B} is available, can this process be proved. Elsewhere $\Sigma^{\prime \prime}$ and $\Sigma^{\prime \prime \prime}$ can be separated only by analogical extension of the results obtained for α.

Different views have been held as to the stage(s) at which Harpocration was added to Σ. Wentzel, writing before most of α in Photius was known, included Harpocration among the common additions. ${ }^{19}$ Reitzenstein, the first to have a clear view of the stages of expansion in Σ, likewise included Harpocration in $\Sigma^{\prime} .{ }^{20}$ This was, however, denied by Adler; ${ }^{21}$ in order to explain why Harpocration glosses sometimes break the alphabetical sequence in Photius, and why they do not often appear in combination with other glosses, she supposed that Harpocration was used directly by the Suda and Photius (one must suppose also by B, though she does not say so). Erbse follows this without discussion. ${ }^{22}$ Alpers suggests a compromise: Harpocration may have been added to Σ^{\prime} but also used directly by the Suda and Photius. ${ }^{23}$ Theodoridis in his marginal notes to Photius implicitly follows Wentzel.

To endeavour to settle this matter is the aim of this paper. It seems that the best chance of doing so is by a detailed examination of the glosses in α, where we have the benefit of three sources.

[^2]
2．Data：Distribution of Glosses

The glosses of Harp．appear in B Suda Phot．almost in their en－ tirety．For α there are 285 glosses in Dindorf＇s edition，but of these 14 are totally omitted in the epitome，${ }^{24}$ and hence in B Suda Phot． （with two exceptions，$\dot{\alpha} \gamma \nu \epsilon \dot{v} \epsilon \tau \alpha \iota$ and $\dot{\alpha} \rho \gamma v \rho \hat{\imath} \tau \iota s \gamma \hat{\eta}$ ）．Of the remaining 271 only 6 do not appear in any of them：
$\dot{\alpha} \kappa \iota \nu \alpha \dot{\kappa} \boldsymbol{\eta}$（18．12）（ Σ^{\prime} has another gloss，Bach．54．11，Suda人882， Phot．α 754）
$\dot{\alpha} \mu \beta \lambda \omega \theta \rho i \delta i o \nu$（25．13）（ Σ has another gloss，Boysen XIa．18，Bach． 79．2，Suda 1524 ，Phot．$\alpha 1161$ ）
$\dot{\alpha} \mu \dot{\omega} \sigma \gamma \epsilon \pi \omega s$（29．10）（ Σ has another gloss，Boysen XIIIb．21，Bach． 82．5，Suda人1645，Phot．α 1391）
$\dot{\alpha} \nu \alpha \tau i(33.12)$（ Σ＇has another gloss，Bach．85．19，Suda 2102 ，Phot． $\alpha 1691)^{25}$
$\dot{\alpha} \nu \dot{\eta} \kappa \epsilon \iota$（37．3）（ Σ＇has another gloss，Bach．96．25，Suda人2405，Phot． α 1917）
а́оккоs（38．10）
It is noteworthy that in five of these cases a gloss from a different source is in Σ ；although in general two or more glosses on the same word are seldom avoided in Byzantine lexica，this does occasionally happen，${ }^{26}$ and may be operative here．${ }^{2}$ ockos is grossly out of place （presumably whoever first positioned it either read or was thinking of
 it was to be restored to its proper alphabetical place but was over－ looked at that point．

There remain 265． 162 of these are in all three of B Suda Phot．A total of 20 appear in only one of the sources，while 83 appear in only two．Before these are considered，it is necessary to note that in \mathbf{B} the section from $\mathrm{A} \mu$ to $\mathrm{A} \nu \delta$（middle）does not contain any addition from Σ^{\prime} or $\Sigma^{\prime \prime \prime} .{ }^{27}$ Glosses from that area in Suda and／or Phot．are there－

[^3]fore not significant；this reduces the number to 12 in one source and 49 in two．

B：\quad＇А $\pi \alpha \tau о$ v́ $\rho<\alpha$（42．18；Bach．113．5）
＂А $\boldsymbol{\rho} \theta \mu$ uоs（57．10；Bach．143．3）
$\alpha{ }^{\mathfrak{v}}$（67．6；Bach．162．25）
Suda：àd́v́vatoı（11．12；Suda人540；Bach．32．13，Phot．$\alpha 393$ from Bekk．v）
$\dot{\alpha} \epsilon i(12.6 ;$ Suda 605 ；Bach．33．25，Phot．$\alpha 405$ from Phryn．）
＇A $\nu \theta$ ท＇$\nu \eta$（38．4；Suda 2513）
$\dot{\alpha} \nu \tau \iota \gamma \rho \alpha \phi{ }^{\prime}(39.10 ; \text { Suda } 2661)^{28}$
a̋kovı（41．17；Suda人2833）${ }^{29}$
$\dot{\alpha} \pi о \delta \epsilon \kappa \tau \alpha{ }^{\prime}$（46．4；Suda 3281 ；Bach．124．2，Phot．$\alpha 2480$ from Bekk．v）
$\dot{\alpha} \pi о \sigma \tau 0 \lambda \epsilon i \varsigma(51.5 ;$ Suda 3559 ；Bach．133．16，Phot．$\alpha 2660$ from Bekk．v）
$\dot{\alpha} \rho \gamma v \rho i ̄ \tau \iota \varsigma \gamma \hat{\eta}$（56．4，not in epitome；Suda 3792 ）
$\dot{\alpha} \tau i \mu \eta \tau о \boldsymbol{\alpha} \dot{\alpha} \gamma \omega \dot{\nu}$（64．1；Suda 4364 ；Bach．160．3，Phot．$\alpha 3094$ from Bekk．v）
Suda Phot．：${ }_{\alpha} \beta \boldsymbol{\beta} \iota \boldsymbol{\text {（ }}$（3．1；Suda 47 ，Phot．$\alpha 38$ ；Bach．6．3，Phot．$\alpha 37$ from ？）
$\dot{\alpha} \gamma \alpha \theta \hat{\eta} \varsigma \tau \dot{v} \chi \eta \varsigma \nu \epsilon \omega \dot{\rho}$（3．6；Suda人111，Phot．$\alpha 69$ ）
$\dot{\alpha} \gamma \nu \omega \mu o ́ \nu \omega \mathrm{~s}$（6．3；Suda人284，Phot．$\alpha 218$ ；Boysen VIIIb．2， Bach．13．21，Suda 284 ，Phot．$\alpha 217$ from Cyr．＋）
á $\gamma \mathbf{\rho} \boldsymbol{\rho} \sigma \alpha \iota$（6．11；Suda人304，Phot． 230 ）
$\dot{\alpha} \delta \dot{\eta} \phi \alpha \gamma o \iota \tau \rho \iota \eta \dot{\eta} \rho \iota \varsigma$（10．12；Suda 469 ，Phot．$\alpha 343$ ；Bach． 30．10，Phot．$\alpha 342$ from Bekk．v）
$\dot{\alpha} \epsilon \iota \epsilon \sigma \tau \dot{\prime}(13.4 ;$ Suda $618, \alpha \iota 103$ ，Phot．$\alpha 422$ ）
$\dot{\alpha} \epsilon \iota \lambda o \gamma i \alpha$（13．2；Suda 628 ，Phot．$\alpha 423$ ）
$\dot{\alpha} \epsilon \tau$ ós（14．3；Suda 576 ，Phot．$\alpha 426$ ；Bach．35．10，Phot．$\alpha 426$ from Bekk．v）
$\dot{\alpha} \zeta \boldsymbol{\eta} \tau \eta \tau 0 \nu(15.1 ;$ Suda人 598 ，Phot．$\alpha 437$ ；Bach． 35.18 from ？）
$\alpha i \gamma i ́ \delta \epsilon s$（16．3；Sudaac60，Phot．$\alpha 523$ ）
Aíyı入ıєv＇s（16．6；Sudaac47，Phot．$\alpha 524$ ）
áлоүo七 є́ $\rho \alpha \nu \iota \sigma \tau \alpha i ́(23.11$ ；Suda人1315，Phot．$\alpha 1039$ ；Bach． 71．16，Phot．$\alpha 1027$ from Bekk．v）

$\dot{\alpha} \pi \epsilon \sigma \chi o \iota \nu \iota \sigma \mu \epsilon ́ \nu o s(44.3 ;$ Suda人3079，Phot． 2375 ）

$\dot{\alpha} \rho \chi \grave{\eta}{ }_{\alpha} \nu \delta \rho \alpha$ бєік $\nu v \sigma \iota(60.16 ;$ Suda 4096 ，Phot． 2929 ）
$\dot{\alpha} \rho \chi \dot{\eta} \nu i \hat{\alpha} \sigma \theta \alpha \iota$（61．3；Suda 4098 ，Phot．$\alpha 2930$ ）

[^4]$\alpha \dot{v} \theta \in ́ v \tau \eta \mathrm{~s}$（66．5；Suda 4426 ，Phot．$\alpha 3161$ ；Bach．163．18，Phot． $\alpha 3160$ from Ael．Dion．α 194）
α चैлєшos（66．8；Suda 4443 ，Phot．$\alpha 3176$ ）
Аѝтоклєį́ŋs（67．3；Sudaん4498，Phot． 3324 ）
$\dot{\alpha} \phi \in i \varsigma ~ \tau \grave{\eta} \nu \quad \dot{v} \pi \epsilon \dot{\rho} \rho \alpha \nu .$. （69．9；Suda人4599，Phot．$\alpha 3320$ ）

B Phot．：$\dot{\alpha} \gamma \nu \epsilon \dot{\prime} \epsilon \tau \alpha \iota$（5．7；Bach．24．1，Phot．$\alpha 205$ ）
$\dot{\alpha} \delta$ モ́ η тos（9．8；Bach．27．9，Phot．$\alpha 329$ ；Suda 435 from Bekk． iv）
＇A $\lambda \bar{\epsilon} \xi \alpha \boldsymbol{\nu} \delta \rho 0$（21．3；Bach．66．6，Phot．$\alpha 916$ ）

＇A $\nu \tau \iota \gamma \in \nu i \delta \alpha$ s（39．3；Bach．104．19，Phot．α 2082）
B Suda：à $\boldsymbol{\gamma} \boldsymbol{\alpha} \boldsymbol{\phi} \dot{\mathbf{o}} \boldsymbol{0}$（6．12；Bach．15．24，Suda 343 ；Phot．$\alpha 253$ from Bekk．v）
$\dot{\alpha} \delta \epsilon \lambda \phi \dot{\jmath} \epsilon \iota \nu$（9．9；Bach．27．29，Suda $\alpha 441$ ；Phot．$\alpha 333$ from ？）
$\dot{\alpha} \delta \eta \mu$ огоv́б η s（10．1；Bach．27．31，Suda 459 ；Bach．27．11， Phot．$\alpha 334$ from ？）
＂A $\nu \delta \rho \omega \nu$（35．5；Bach．86．23，Suda 2193 ）
＇А $\nu \in \mu$ út α s（36．5；Bach．90．31，Suda 2267）
＇A ${ }^{\prime} \dot{\prime}{ }^{\prime}{ }^{\prime}$ os（41．15；Bach．108．6，Suda人 2822）
$\dot{\alpha} \pi \alpha \theta \hat{\eta}$（42．13；Bach．109．29，Suda 2873 ）
$\dot{\alpha} \pi \alpha \rho \tau \iota \lambda о \gamma^{\alpha}(42.16$ ；Bach．111．29，Suda人2929）
$\dot{\alpha} \pi о \gamma \rho \alpha \phi \dot{\eta}^{\prime}$（45．11；Bach．122．25，Suda人3273）
$\dot{\alpha} \pi \boldsymbol{\sigma} \sigma \tau \alpha \sigma i o v(50.10 ;$ Bach．132．6，Suda人3546；Bach．132．12， ［Suda 3546 ］，Phot．$\alpha 2640$ from Bekk．iv）
$\dot{\alpha} \pi \rho o \sigma \tau \alpha \sigma \dot{o} v(53.12 ;$ Bach．138．28，Suda 3703）
$\dot{\alpha} \pi \rho o ́ \tau \omega \nu$（53．16；Bach．139．1，Suda人3704）
＇Apoфท＇ขlos（54．4；Bach．140．5，Suda人3746）
$\dot{\alpha} \rho \gamma \alpha \dot{s}$（54．6；Bach．141．14，Suda 3760；Phot．$\alpha 2768$ from Bekk．v）
＂Apyovo α（55．9；Bach．142．6，Suda 3784）
$\dot{\alpha} \rho \mu \sigma \sigma \tau \alpha i(58.16 ;$ Bach．145．2，Suda 3979 ；Bach．145．4，Phot． $\alpha 2838$ from Bekk．v）
$\dot{\alpha} \rho \rho \eta(\nu 0)$ форєív（59．1；Bach．145．23，Sudaк3848；Bach．146．3， Phot．$\alpha 2876$ from ？）
＇Aртєнібю（59．13；Bach．147．21，Suda人4031）
$\dot{\alpha} \rho \chi \alpha \iota(\rho \epsilon) \sigma \dot{\alpha} \zeta \epsilon \iota \nu$（60．3；Bach．149．11，Suda 4079 ；Bach． 149．13，Phot．$\alpha 2923$ from Diogenianus）
 $\dot{\alpha} \sigma \tau \rho \alpha \dot{\alpha} \beta \eta$（62．18；Bach．154．16，Suda 4248 ；Suda 4248 ，Phot． $\alpha 3017$ from ？）
$\dot{\alpha} \chi \alpha \rho \iota \sigma \tau \epsilon \hat{\imath} \nu(70.7 ; ~ B a c h .174 .13, ~ S u d a \alpha 4675 ; ~ S u d a \alpha 4674$, Phot．$\alpha 3428$ from Timaeus）
Here again there are a fair number of double glosses from other sources．

Harp. in \mathbf{B}
It is well known that the Σ^{\prime} and $\Sigma^{\prime \prime \prime}$ series in \mathbf{B} are in general distinguishable. ${ }^{30}$ The Harp. glosses for the most part appear in the Σ^{\prime} series; there are a few short runs:

Bach.27.29-28.8 $\dot{\alpha} \delta \epsilon \lambda \phi i \zeta \epsilon \epsilon \nu, \dot{\alpha} \delta \eta \mu \boldsymbol{\nu}$

Bach.37.14-16 $\dot{\alpha} \theta \epsilon \dot{\omega} \rho \eta \tau о \varsigma, ~ ' A \theta \eta \nu o ́ \delta \omega \rho o s, ~ ' A \theta \mu о \nu \in \dot{v} s$

Bach.72.26-73.3 'А $\lambda \hat{\omega} \alpha$, 'A $\lambda \omega \pi \epsilon \kappa \hat{\eta} \theta \epsilon \nu$, 'A $\lambda \omega \pi \epsilon \kappa о ́ \nu \nu \eta \sigma o s$
Bach.97.18-23 "А $\nu \theta \epsilon \epsilon \alpha$, 'A $\nu \theta \epsilon$ но́критоя, 'A $\nu \theta \epsilon \sigma \tau \eta \rho i \omega \nu$
 $\dot{\alpha} \pi \grave{o}$ тồ $\pi \rho \dot{\alpha} \gamma \mu \alpha \tau о \mathrm{~s}$
Bach.138.24-139.1 $\dot{\alpha} \pi \rho o ́ \sigma \kappa \lambda \eta \tau о \nu, \dot{\alpha} \pi \rho o \beta o v i \lambda \epsilon v \tau о \nu, \dot{\alpha} \pi \rho o \sigma \tau \alpha \sigma i o v$, $\dot{\alpha} \pi \rho \dot{\sigma} \tau \omega \nu$
 $\phi \rho o \nu$, (àprvpiov סikn Bekk. v), "A $\rho \gamma o v \sigma \alpha$
 and one long one:
 $\tau \omega \mu \sigma \sigma i \alpha$ Tim.), $\dot{\alpha} \nu \tau \omega \mu \sigma \sigma i \alpha,\left(\dot{\alpha} \nu \tau \omega \mu \sigma \sigma i \alpha \Sigma^{\prime}\right)$, 'А $\nu \tau \dot{\alpha} \tau \alpha \mathrm{s}, \dot{\alpha} \nu \tau \iota-$

This last comes between the Σ (some Σ^{\prime}) $\alpha \boldsymbol{\nu} \tau$ - series and the $\Sigma^{\prime \prime \prime}$ one. Apart from these most of the Harp. glosses are not grouped in any significant way. There are, however, a handful that appear in distinctly $\Sigma^{\prime \prime \prime}$ contexts:
$\dot{\alpha} \gamma \nu \epsilon \dot{v} \epsilon \tau \alpha \alpha$ (Bach.24.1) in its correct alphabetic place in the long (about 75 glosses with scarcely an interruption) $\Sigma^{\prime \prime \prime} \alpha \gamma$ - series
'Apıттє́s (Bach.143.8) in a small group of four glosses
$\dot{\alpha} \rho \rho \eta \phi о \rho \in \hat{\epsilon} \nu$ (Bach.145.24) near the beginning of nine $\alpha \rho \rho$ - glosses mostly from $\Sigma^{\prime \prime \prime}$
'A $\rho \chi \iota \delta \dot{\alpha} \mu \epsilon \iota o s \pi \delta \dot{\prime} \lambda \epsilon \mu$ оs (Bach.149.18) in a run of about the same length
$\dot{\alpha} \sigma \tau \alpha \theta \mu \eta \tau \dot{\sigma} \tau \alpha \tau о \nu,{ }_{\alpha} \sigma \tau \iota \kappa \tau о \nu \quad \chi \omega \rho \dot{o} \nu, \dot{\alpha} \sigma \tau v \nu \dot{\mu} \mu \circ$ (Bach.155.16, 19, 23) near the beginning of a group of a dozen.

Of these $\dot{\alpha} \gamma \nu \epsilon \dot{v} \epsilon \tau \alpha \iota$ is in Phot. but not in Suda or in the epitome of Harp.; 'A $\rho \iota \sigma \tau \epsilon \dot{\prime}$'s is in Phot. but not in Suda; $\dot{\alpha} \rho \rho \eta \phi \quad \rho \epsilon \hat{\imath} \nu$ and 'A $\boldsymbol{\chi} \iota-$ $\delta \alpha \dot{\mu} \mu \epsilon o s \pi \sigma^{\prime} \lambda \epsilon \mu$ os are in Suda but not in Phot.; and the other three are in both Suda and Phot.

[^5]
Order in Phot.

The breaking of alphabetical order by Harp. glosses in Phot. was, as already noted, one of Adler's reasons for thinking that they were added directly by Phot. Reitzenstein remarked briefly on the alphabetical order that "kein Verständiger wird darauf verzichten, aus der Stellung bei ihm ab und an auf den Ursprung der Glossen Schlüsse zu machen-immerhin aber so, dass eine nur von ihm ausgehende Untersuchung nie zu klaren Ergebnissen kommen kann." ${ }^{31}$ The analysis begun by him (xlii-xlv) can now be extended.

While Phot. is much closer to being fully alphabetized than for example B, it is (in contrast with Suda) far from completely so. Of the two-letter sequences in α, only the brief $\alpha \alpha$ - (17 glosses) and $\alpha \eta$ - (11) have no irregularities. A very common reason for minor breaches of order is that inflectional endings and the like in words from the same root are not taken into account; particularly extensive examples are $\dot{\alpha} \gamma \alpha \nu \alpha \kappa \tau-100-03$, $\alpha \iota \rho-639-53$ (649 inserted), $\dot{\alpha} \kappa о \nu-$ 802-21, $\dot{\alpha} \mu \alpha \chi$ - 1149-57, and $\dot{\alpha} \nu \theta \rho \omega \pi$ - 1974-89. Unamalgamated sequences can be seen in $\dot{\alpha} \delta \omega \alpha-346 \mathrm{f} / 348-53 / 354 / 355-59$; $\dot{\alpha} \epsilon \iota-404-16 /$ 420-23 (cf. below); $\alpha i \rho-\alpha i \sigma-\alpha i \tau-637-73 / 686-98 ; \dot{\alpha} \mu v-1258-84 /$ 1285/1286-90; $\dot{\alpha} \xi-2172-76 / 2179-82 ; \dot{\alpha} \pi о \lambda-2535-49 / 2550-59$. Some out-of-place runs can be recognised as being from $\Sigma^{\prime \prime \prime}: 102-17,147-$ $51,211-15,355-59,471-75,505-19,617-34,755-58,822-30$, and 3313-18. Single glosses or small groups that are distinctly out of place are $93-97,486,558,615,649,654,655 f, 660,684,685,799 f, 917$, 982, 984-86, 1039-42, 1136-43, 1225-32, 1347f, 1471, 1644-47, 1683-85, 1798, 1800-02, 1941, 1973, 2051-66, 2112f, 2125-29, 2135f, 2162, 2276, 2296, 2298, 2301, 2303-07, 2365f, 2521, 2527, 2561, 2650-58, 2659-65, 2708, 2745f, 2775-77, 2780-82, 2866-69, 2871f, 2873f, 2990f, 3210-12, 3216-19, and 3248. There are many smaller irregularities.

Of the Harp. glosses that disturb the alphabetical order many come into the category of words from the same root:
$\rho \alpha \dot{\sigma} \alpha \iota, 260 \dot{\alpha} \gamma \rho i o v s, 279 \dot{\alpha} \gamma v \omega \alpha \widehat{ }, 318 \dot{\alpha} \gamma \omega \nu i \alpha \nu \nu,-\hat{\omega} \nu \tau \epsilon \varsigma, 521$ Ai-
'А $\bar{\lambda} \omega \pi \epsilon \kappa \hat{\eta} \theta \epsilon \nu, 1091$ 'А $\lambda \omega \pi \epsilon \epsilon о ́ \nu \nu \eta \sigma o s, 1400 \dot{\alpha} \nu \alpha \beta \dot{\alpha} \lambda \lambda \epsilon \iota \nu, 1472 \dot{\alpha} \nu \alpha-$
θ é $\sigma \theta \alpha \iota$ (1473 is a later insertion), $1493 \dot{\alpha} \nu \alpha i \nu \epsilon \sigma \theta \alpha \iota, 2089 \dot{\alpha} \nu \tau \tau \gamma \rho \alpha-$
out of place), $2929 \dot{\alpha} \rho \chi \grave{\eta}{ }_{\alpha}^{\alpha} \nu \delta \rho \alpha \alpha \epsilon i \kappa \nu v \sigma \iota, 2953 \dot{\alpha} \sigma \dot{\eta} \mu \alpha \nu \tau \alpha, 3094$

[^6] $\dot{\alpha} \phi о \rho \mu \dot{\eta}$, and $3428 \dot{\alpha} \chi \alpha \rho \iota \sigma \tau \epsilon i \nu$.
Others, despite initial appearances, do not in reality disturb the order:
$223{ }_{\alpha}^{\alpha} \gamma_{0<}$ (221f have been added), $269^{\text {'A }} \boldsymbol{\gamma} \rho \rho o \iota \lambda \hat{\eta} \theta \in \nu$ (267 f are out of place), 1098 f 'А $\mu \dot{\alpha} \delta о к о \varsigma, ~ ' А \mu \alpha \zeta о ́ \nu о \nu ~(1097 ~ i s ~ o u t ~ o f ~ p l a c e), ~ 2082 ~$ 'A $\nu \tau \tau \gamma \in \nu i \delta \alpha \alpha$ (2083-85 are out of place), $2196 \alpha_{\alpha}^{\alpha} \pi \tau \alpha$ (2195 is out of place), $2350 \dot{\alpha} \pi \epsilon \rho \gamma \alpha \sigma \dot{\alpha} \mu \epsilon \nu 0$ (2349 is out of place), $2675 \dot{\alpha} \pi \dot{\alpha} \tau \alpha \xi \iota$, (2674 is out of place) and $3234 \alpha \dot{\tau} \tau o \mu \alpha \chi \epsilon \hat{\iota} \nu$ (3233 is out of place).
The following do disturb the order:
130 'A $\gamma \alpha \sigma \iota \kappa \lambda \hat{\eta} \varsigma, 285$ 'A $\gamma \dot{v} \rho \rho \omega o s, 354 \dot{\alpha} \delta \dot{\alpha} \dot{\alpha} \sigma \tau \alpha \tau o \nu(c f . ~ a b o v e), ~ 374$ $\dot{\alpha} \delta о к і \mu \alpha \sigma \tau о \varsigma, 422 \mathrm{f} \dot{\alpha} \epsilon \epsilon \epsilon \sigma \tau \dot{\omega}, \dot{\alpha} \epsilon \iota \lambda о \gamma^{\prime} \alpha$ (with 420 f a separate $\Sigma^{\prime \prime}$ block), $468{ }^{\text {' }} \mathrm{A} \theta \mu \mathrm{o} \boldsymbol{\nu} \epsilon \dot{\prime} \mathrm{s}$ (467 is the previous Harp. gloss), 605 Ai -

 Harp. gloss), 1500 'A $\nu \alpha \kappa \alpha i \alpha \sigma \iota \nu$ (1499 may be a later addition),
 the next Harp. gloss), 2135 f ' ${ }^{\prime} \nu \tau \omega \chi$ र's, " $\mathrm{A} \nu \tau \tau \sigma \sigma \alpha, 2150 \dot{\alpha} \nu \tau \omega \mu \sigma \sigma i \alpha$,
 $\sigma \dot{\alpha} \mu \epsilon \nu 0 \nu$ (in a confused area), $2687 \dot{\alpha} \pi \sigma \pi \epsilon \tau \chi i \sigma \alpha \iota$ (in a confused area), $2703 \dot{\alpha} \pi{ }^{\prime} \dot{\prime} \phi \alpha \sigma \iota \varsigma, 2715 \dot{\alpha} \pi$ офор $\dot{\alpha} \nu$ (in a confused area), ${ }^{32} 2746$
 v gloss on the same word is correctly placed), 3130 " $\mathrm{A} \tau \pi \kappa$ (in a confused area), and $3322 \dot{\alpha} \phi^{\prime}$ 'E σ тias.
That is, a maximum of 38 glosses out of 227 are out of place. Given the character of the lexicon that does not appear an excessive number.

Combined glosses

The manner in which similar glosses of different origin are combined is a further means of establishing relationship. The Harp. glosses concerned are these:

 $i \delta \omega \tau \omega \hat{\nu}$. . . ($\Sigma^{\prime}:$ Cyr. +?), (3) $\alpha \gamma \epsilon \lambda \alpha i \omega \nu \cdot \tau \hat{\nu} \nu \pi о \lambda \lambda \omega \hat{\nu} \kappa \alpha i \tau \nu \chi o ́ \nu-$
 $\kappa \alpha i \epsilon \dot{v} \tau \epsilon \lambda \grave{\eta} \mathrm{~s} . .\left(\Sigma^{\prime \prime \prime}:\right.$ Paus. $\left.\alpha 12\right)$. These are combined as follows: B (Bach.8.25f) (2)/(1) + (3) + (4); Suda $187(1)+(2)(+J u l i a n)$ $+(3)$; Phot. α 134, 141 (2) + (3)/(4).

[^7] gloss by itself，Phot．$\alpha 229$ adds a sentence from Bekk．v．
Aivious．The epitome of Harp．（17．9），by omitting the citation from Demosthenes（23．119）that followed the lemma，produced the rather odd－looking gloss Aivious Aivos π órıs $\dot{\epsilon} \sigma \tau i ~ \tau \hat{\eta} s ~ \Theta \rho \dot{\alpha}-$ к $\boldsymbol{\sigma} \boldsymbol{s} . .$. ．This is reproduced by B（Bach．47．4）and Phot．$\alpha 605$ ． Suda misunderstood it and（combining it with another source）

$\dot{\alpha} \kappa \rho \circ \hat{\alpha} \sigma \theta \alpha c$. Suda人 993 ，Phot．$\alpha 849$ have from Harp．（19．11）$\dot{\alpha} \nu \tau i$
 56．12）substitutes $\kappa \alpha i \dot{\nu} \boldsymbol{v} \pi о \tau \epsilon \tau \alpha \dot{\alpha} \theta \alpha \iota \cdot \Pi \lambda \alpha \dot{\alpha} \omega \nu$（Grg．488c）каí from Phrynichus（Praep．Soph．38．6）．
$\dot{\alpha} \lambda \alpha \dot{\alpha} \sigma \tau \omega \rho$ ．There are three glosses：（1）фо⿱亠䒑òs $\delta \alpha i \mu \omega \nu, \tau \mu \mu \omega \hat{\omega} \nu$

 $\pi \boldsymbol{\pi} \boldsymbol{\nu}$ ．．（Paus．$\alpha 61$ ）．Phot．（ $\alpha 903,902,896$ ）has them separate．B （Bach．65．7）inserts part of（1）and all of（2）near the beginning and end respectively of（3）．Suda 1082 has（1）with $\pi \kappa \kappa \rho o ̀ s ~ к \alpha i$ inserted from $\Delta+$ extract from Polybius $+(2) .{ }^{33}$
$\dot{\alpha} \lambda i \pi \epsilon \delta o \nu$ ．Two glosses（ Σ and Harp．21．18）in Phot．$\alpha 955 \mathrm{f}$ are com－ bined by insertion of $\delta \epsilon$ in B（Bach．67．5）and Sudaa 1240.
$\dot{\alpha} \nu \delta \rho \alpha \pi о \delta o \kappa \alpha \dot{\alpha} \eta \eta \lambda o s$. Two glosses（ Σ and Harp．34．10）are combined by insertion of $\kappa \alpha i$ in Phot．α 1746，of oviv（with an Aristophanic scholium and an excerpt of Procopius）in Sudao2155．
${ }^{\prime}$＇$\nu \theta \epsilon \sigma \pi \eta \rho \rho^{\prime} \omega \nu$ ．In the gloss from Harp．（38．1），Suda人2500，Phot． $\alpha 1955$ ，there is one etymology of the word：B（Bach．97．23） inserts an alternative．
$\dot{\alpha} \pi \alpha \gamma \omega \gamma \dot{\eta}$ ．Two glosses（ Σ and Harp．42．8）are grouped in one of the Suda＇s characteristic paragraphs，preceded by the Σ gloss $\dot{\alpha} \pi \alpha \gamma \omega \gamma \dot{\alpha}{ }^{\prime}$ and separated by an excerpt from Philostorgius（ Su － da 2869 ）．In Phot．$\alpha 2208 \mathrm{f}$ they are separate，but the former has
 конסín，oiov $\dot{\eta} \dot{\alpha} \gamma \omega \gamma \gamma^{\prime}$ ．In B（Bach．109．20，24）this is added to the Harp．gloss，whose last sentence is transferred to the other．
$\dot{\alpha} \pi \alpha \rho \tau \lambda \lambda o \gamma \dot{\alpha} \alpha$ ．Two similar glosses in B（Bach． $111.23 \dot{\boldsymbol{o}} \dot{\alpha} \pi \eta \rho \tau \sigma \mu \mu \dot{\epsilon}-$

 Harp．（42．16），are combined in Sudaa2929 $\dot{\alpha} \pi \eta \rho \tau \tau \sigma \mu \epsilon \in \nu o s ~ к \alpha i$

[^8]$\dot{\alpha} \pi \epsilon \iota \pi \epsilon \hat{\imath} \nu$. Phot. $\alpha 2311$ has the Harp. (43.7) gloss $\dot{\alpha} \nu \tau i \quad \tau o \hat{v} \dot{\alpha} \pi \sigma^{-}$

 $\dot{\alpha} \nu \tau i \tau o v \hat{\text { i }}$ In B (Bach.116.7) it has the same form as in Phot., but $\hat{\eta} \kappa \alpha i \dot{\alpha} \pi \iota \sigma \tau \epsilon \hat{\imath} \nu$ is inserted after $\dot{\alpha} \delta \nu \nu \alpha \tau \hat{\eta} \sigma \alpha \iota$ (by confusion with the gloss Suda人3116, Phot. $2311 \dot{\alpha} \pi \epsilon \epsilon \theta \epsilon i ̂ \nu \cdot \dot{\alpha} \pi \iota \sigma \tau \epsilon i ้ \nu)$.
$\dot{\alpha} \pi \epsilon \sigma \chi \chi \circ \nu \iota \sigma \mu \epsilon ́ \nu o s . B$ (Bach.118.26) has the Σ gloss $\dot{\alpha} \pi \epsilon \sigma \chi 0 \iota \nu \iota \sigma \mu \epsilon '-$

 $\boldsymbol{\gamma \epsilon i \tau o \nu o s ~ (2 5 . 2 8) ~ \dot { \alpha } \nu \tau i} \tau \boldsymbol{\tau} \hat{v} \dot{\alpha} \pi о к є \kappa \lambda \epsilon \iota \sigma \mu \in ́ \nu o s . ~ P h o t . ~ \alpha 2375$ seems to be this, with the citation omitted. Sudaa3079 combines the

$\dot{\alpha} \pi \mathbf{\alpha} \boldsymbol{\gamma} \rho \alpha \phi \dot{\eta}^{\prime} . \mathrm{B}$ (Bach.122.25) prefixes the Σ (Cyr.) gloss to that of Harp. (45.11). Suda 3273 has them in reverse order. Phot. $\alpha 2468$ has only the former.
$\dot{\alpha} \pi о \pi \epsilon \phi \alpha \sigma \mu \epsilon ́ \nu o \nu$. B (Bach.130.14) and Sudao3475 join the Σ (Cyr.) and Harp. (49.11) glosses with η. Phot. $\alpha 2604$ has only the latter.
 $\pi о \mu \pi \hat{\eta} \varsigma \tau \hat{\omega} \nu \tau \rho \iota \eta \dot{\eta} \rho \omega \nu \dot{\alpha} \pi \sigma \delta \epsilon \delta \epsilon \iota \gamma \mu \in ́ \nu o u$. Phot. $\alpha 2660$ has the Bekk.

 $\tau o ̀ ~ \dot{\alpha} \pi о \sigma \tau \epsilon \bar{\lambda} \lambda \epsilon \iota \nu \tau \dot{\alpha} \pi \lambda o i ̂ \alpha . \mathrm{B}$ (Bach.133.16) also follows Bekk. v in essence, but inserts material from Harp. with oi $\dot{\epsilon} \pi i \quad \tau \hat{\eta} \mathrm{~s} \dot{\epsilon} \kappa$ -

$\dot{\alpha} \rho \gamma \alpha \dot{s}$. B (Bach.141.14) and Suda 3760 have the Harp. (54.6) gloss
 лov... . Before this B has ó $\delta \epsilon \iota \nu o ́ \tau \alpha \tau o s ~ \pi \alpha \rho ’ \dot{\eta} \lambda \iota \kappa i \alpha \nu \dot{\alpha} \rho \gamma \dot{\alpha} \varsigma$

 rated material from the Bekk. v (206.7) gloss in Phot. $\alpha 2768$,

 known. ${ }^{34}$
$\dot{\alpha} \rho \mu о \sigma \tau \alpha i$. As with $\dot{\alpha} \pi \sigma \sigma \tau 0 \lambda \epsilon i s$, Suda 3979 has the Harp.(58.16)

 $\theta \iota \sigma \tau \hat{\alpha} \nu \quad \tau \dot{\alpha} \varsigma \dot{v} \pi{ }^{\prime} \alpha \dot{v} \tau \hat{\omega} \nu \quad \phi \nu \lambda \alpha \tau \tau 0 \mu \in ́ \nu \alpha \varsigma \pi o ́ \lambda \epsilon \iota \varsigma$), and B (Bach.

[^9]145.2) combines the two (oi $\dot{v} \pi \bar{o} \tau \hat{\omega} \nu \Lambda \alpha \kappa \epsilon \delta \alpha \iota \mu о \nu i \omega \nu$ єis $\tau \dot{\alpha} s$ $\dot{v} \pi \eta \kappa o ́ o v s ~ \pi o ́ \lambda \epsilon \iota \varsigma ~ \alpha ้ \rho \chi о \nu \tau \epsilon \varsigma ~ к \alpha i ́ ~ ф \rho о v ́ \rho \alpha \rho \chi о \iota ~ є ̇ к \pi \epsilon \mu \pi о ́ \mu є \nu о \iota, \pi \alpha \rho \dot{\alpha}$ $\tau \grave{\alpha} \alpha \rho \mu o ́ \zeta \epsilon \iota \nu \kappa \tau \lambda$.$) .$
 (Hp.Mi. 371d; perhaps from Phrynichus fr.263), and $\dot{\alpha} \rho \chi \alpha i \omega s \cdot$ 'I $\sigma о \kappa \rho \alpha \dot{\tau} \tau \eta \varsigma$ $\mu \in ̇ \nu .$. (from Harp.60.5), are differently treated. Phot. $\alpha 2920$ f has them separate; Suda 4074 f has them separate but in reverse order, with the latter preceded by the Ambrosian o $\pi \alpha \lambda \alpha{ }^{\prime}$ s. B (Bach.148.14) runs the two together. It is to be noted that all three have, explicitly or implicitly, the lemma $\dot{\alpha} \rho \chi \alpha \hat{i}$ os in Harp., for the original $\dot{\alpha} \rho \chi \alpha i \omega s$.

 runs together the Σ gloss óvos, the Harp. (62.18) gloss $\dot{\eta} \dot{\eta} \mu i o-$

 the gloss found in Phot., interposing between the two sentences of the latter $\dot{\alpha} \sigma \tau \rho \alpha \beta \eta \lambda \alpha \dot{\tau} \eta \boldsymbol{s}^{\cdot} \dot{\delta} \dot{\eta} \nu i o \chi o s$ from the Ambrosian lexicon. B (Bach.154.14) joins the gloss in Phot. with Harp.: $\tau \dot{o}$

 Meioiov.

Abbreviated glosses

A few glosses appear in one source or another in an abbreviated form. In B:
*A β apıs. Harp.1.1, Suda 18 , Phot. $\alpha 29$ have a long narration of his history. B (Bach.5.15) has only the opening words ồ ν о α к ќpıг
‘Aßроко́ $\mu \alpha$ с. B (Bach.5.2) again has only ő $\nu о \mu \alpha$ кv́pıо. Harp. epit.
 $\beta \alpha \sigma \iota \lambda \epsilon ́ \omega s$. The full Harp.3.3 and Suda 83 have ov̂тos $\sigma \alpha \tau \rho \alpha \dot{\pi} \pi\rangle$ $\boldsymbol{\eta} \nu \kappa \tau \lambda$.
 Suda $\alpha 109$, Phot. $\alpha 73$ is omitted by B (Bach.6.20).

In Phot.:
$\dot{\alpha} \nu \epsilon \pi o ́ \pi \tau \epsilon \cup \tau 0 \nu$. Phot. $\alpha 1862$ omits the citations from Philochorus (FGrHist 328f69f) that are given by Harp.36.7, Suda 2303 , and B (Bach.91.11).
$\dot{\alpha} \nu \tau \iota \gamma \rho \alpha \phi \in \dot{\prime} s$. Harp.39.5, Sudaa2661, and B (Bach.104.21) have ó

Phot．$\alpha 2089$ has only the last sentence，with the addition $\omega \sim s \phi \eta \sigma$ $\Delta \eta \mu о \sigma \theta \epsilon ́ \nu \eta s$ каi Ai $\sigma \chi i ̀ \eta \eta s$.
$\dot{\alpha} \pi \epsilon \sigma \chi o \iota \nu \iota \sigma \mu \epsilon ́ \nu o s$. See above（215）．
$\dot{\alpha} \pi \lambda \hat{\alpha} \varsigma$ ．Phot．$\alpha 2435$ omits mention of Callistratus from Harp．45．1， Suda人3223，and B（Bach．121．22）．
$\dot{\alpha} \rho \epsilon \tau \eta$＇．Harp．57．9，Suda 3831 ，and B（Bach．142．21）have＇A $\nu \delta \delta$－

In Suda Phot．：
${ }_{\alpha}^{\alpha} \pi \alpha \gamma \epsilon$. Harp． 42.8 and B（Bach．109．14）have $\dot{\alpha} \nu \tau i \tau 0 \hat{v} \chi \rho \hat{\omega} \tau \hat{\eta} \dot{\alpha} \pi \alpha \gamma \omega$－
 סík η єídos．Suda 2861 ，Phot．$\alpha 2201$ omit all after $\Delta \eta \mu \sigma \sigma \theta \epsilon ́ \nu \eta s$.

Textual variations

The relation of the Σ sources to the epitome of Harp．，plain from the selection and wording of the glosses，is confirmed by the textual variations．

B Suda Phot．Harp．epit．：Harp．plen．
$\dot{\alpha} \gamma \boldsymbol{\jmath} \hat{\alpha} \varsigma$（Harp．7．8，Bach．16．8，Suda⿱383，Phot． 279 ）$\sigma \tau \alpha \lambda \alpha \gamma \mu$ oús， $\beta \alpha \rho \beta \alpha \dot{\alpha} \rho \boldsymbol{\prime}$ ：$\sigma \tau \alpha \lambda \alpha \gamma \mu$ îs，$\beta \alpha \rho \beta \alpha \dot{\rho} \rho \omega \nu$

 $\kappa \alpha \theta о \rho \omega \dot{\mu} \mu \epsilon \nu \nu$
גiкias（Harp．17．5，Bach．44．9，Suda⿱ı169，Phot．$\alpha 587$ ）$\pi \lambda \eta \gamma \alpha i \stackrel{s}{s}: \pi \lambda \eta$－ $\gamma \hat{\eta} s$
Aiviovs（Harp．17．9，Bach．47．4，Suda人ı225，Phot．$\alpha 605$ ）̇̇ $\pi \eta \gamma \alpha \dot{\gamma} \gamma \boldsymbol{\nu} \tau \boldsymbol{\tau}$

Ai $\xi \omega \nu \hat{\eta} \sigma \iota \nu$（Harp．18．1，Bach．47．7，Sudaんı242，Phot． 609 ）$\lambda \epsilon \in \gamma \epsilon \sigma-$ $\theta \alpha \iota: \lambda \epsilon ́ \gamma \epsilon \iota \nu$
人̈кк $\alpha \rho$（Harp．18．11，Bach．53．10，Suda 800 ，Phot．$\alpha 716$ ）${ }_{\alpha}^{\alpha} \kappa \alpha \rho: ~ \dot{\alpha} \kappa \alpha \rho \hat{\eta}$ vel $\dot{\alpha} \kappa \alpha \rho \epsilon i$
＇Актй（Harp．19．12，Bach．60．4，Suda人1036，Phot．$\alpha 876$ ）idíws：om．； $\pi \lambda \epsilon^{\prime} \omega: \pi \lambda \epsilon^{i} \omega \mu \hat{\omega} \rho \alpha \nu$
＂Актьа（Harp．20．2，Bach．64．11，Suda 1037，Phot．$\alpha 877$ ）$\tau \hat{\varphi} \pi \epsilon \rho i$ $\tau \hat{\omega} \nu: \dot{\epsilon} \nu \tau \hat{\omega} \pi \epsilon \rho i$
＇A入є́ $\xi \alpha \nu \delta \rho о$（Harp．21．3，Bach．66．6，Phot．$\alpha 916$ ）к $\alpha i: ~ \epsilon i$
There are，however，a handful of cases where one or more of them agrees with the full version against the other（s）and the epitome．
Phot．Harp．epit．：B Suda Harp．plen．
 $\dot{\epsilon} \sigma \tau \iota \nu: ~ \gamma \nu \dot{\eta} \sigma \iota o s$

Suda Phot．Harp．epit．：B Harp．plen．
$\dot{\alpha} \nu \tau \iota \gamma \rho \alpha \phi \eta^{\prime}(H a r p .39 .10$, Bach．104．26，Suda 2661 ，Phot． 2090 ）lem－ ma om．：hab．；$\tau \dot{\alpha}$ ante $\dot{\epsilon} \nu$ ：ante $\tau \hat{\omega} \nu ; \pi \rho \dot{\alpha} \gamma \mu \alpha \tau o s: \pi \epsilon \rho i \quad \tau o \hat{v} \pi \rho \dot{\alpha} \gamma-$ $\mu \alpha \tau 0 s^{35}$
＇Арктойроя（Harp．58．10，Bach．144．20，Suda人3961，Phot． 2827 ）ס̇̀ каі： $\boldsymbol{\delta} \dot{\epsilon}$
＇Aфv́as（Harp．70．5，Bach．173．25，Sudaa4659，Phot．$\alpha 3406$ ）ò $\nu o ́ \mu \alpha-$ $\tau \alpha$ ：ô $\nu o \mu \alpha$
Suda Harp．epit．：B Phot．Harp．plen．
ä $\sigma \tau \iota \kappa \tau о \nu \chi \omega \rho i o \nu$（Harp．62．14，Bach．155．19，Suda人4226，Phot． $\mathbf{\alpha 3 0 1 5)}$ $\dot{\alpha} \sigma \tau \ldots$ ．．： $\boldsymbol{\alpha} \sigma \boldsymbol{\sigma} \boldsymbol{\tau} \boldsymbol{\kappa} \boldsymbol{\tau} \boldsymbol{\nu}$

There are also cases where they all agree against Harp．（generally both versions）：

B Suda Phot．：Harp．
 каі
 $\tau 0$
$\dot{\alpha} \nu \epsilon \lambda o \hat{v} \sigma \alpha$（Harp．35．9，Bach．90．1，Suda 2248 ，Phot．α 1836）$\alpha \boldsymbol{v} \tau \dot{\eta} \nu$ ： α ข่т
＇A $\nu \tau \iota \gamma \epsilon \nu i \delta \alpha{ }^{\prime}$（Harp．39．3，Bach．104．19，Phot． 2082 ）$\Delta \iota \nu v$ v́gov：$\Delta \iota-$ $\nu v \sigma i o v$
$\dot{\alpha} \nu \tau \iota \gamma \rho \alpha \phi \in \cup ̛ ’$（Harp．39．5，Bach．104．21，Suda人2661，Phot． 2089 ） $\hat{\eta} \sigma \alpha \nu: \hat{\eta} \sigma \alpha \nu \dot{\alpha} \nu \tau \iota \gamma \rho \alpha \phi \in i ́ s$
$\dot{\alpha} \nu \tau \omega \mu \sigma_{i}^{\alpha}$（Harp．41．4，Bach．104．1，Suda人2759，Phot．$\alpha 2150$ ）$\gamma \rho \alpha-$ $\psi \alpha \dot{\nu} \tau \omega \nu: \gamma \rho \alpha \dot{\psi} \alpha \nu \tau \epsilon \mathrm{S}$
$\dot{\alpha} \nu \omega \rho \theta \rho i \alpha \zeta_{0} \nu(H a r p .41 .8$ ．Bach．107．3，Suda人2598，Phot． 2167 ）$\dot{\alpha} \nu-$ $\omega \rho \theta \rho i \alpha \zeta o \nu: \alpha, \alpha \omega \rho \theta i \alpha \zeta o \nu ;$ ó $\rho \theta \rho \iota \iota:$ ő $\rho \theta \iota \iota$（epit．：ő $\rho \theta \iota \nu$ plen．）
$\dot{\alpha} \pi \rho о \sigma \tau \alpha \sigma i o v(H a r p .53 .12, ~ B a c h .138 .28, ~ S u d a \alpha 3703) ~ \eta ̉ \rho \nu \epsilon i \tau o: ~ ท i \rho \epsilon i-~$ то
$\dot{\alpha} \rho \gamma \nu \rho о к о \pi \epsilon \hat{\imath} \boldsymbol{\nu}$（Harp．56．5，Bach．141．27，Suda⿱3796，Phot． 2790 ） ท่ $\mu \nu \tau \boldsymbol{\eta} \rho \iota \nu: \sigma \eta \mu \alpha \nu \tau \dot{\eta} \rho \iota \nu$
$\dot{\alpha} \rho \kappa \tau \epsilon \hat{v} \sigma \alpha \iota$（Harp．58．4，Bach．143．23，Suda 3959，Phot．$\alpha 2825$ ）$\pi \alpha \rho-$

$\dot{\alpha} \rho \rho \eta \phi$ орєî̀（Harp．59．1，Bach．145．23，Suda人3848）$\dot{\alpha} \rho \rho \eta \nu о ф о \rho \epsilon i ̂ \nu:$ $\dot{\alpha} \rho \rho \eta \phi о \rho \epsilon \imath \nu$
$\dot{\alpha} \rho \chi \alpha \hat{\imath} о \boldsymbol{o}$（Harp．60．5，Bach．148．14，Suda人4074，Phot． 2921 ）$\dot{\alpha} \rho \chi \alpha \hat{\imath}-$ os：$\dot{\alpha} \rho \chi \alpha i \omega s$
 Пєлотод $\eta \sigma \iota \alpha \kappa \hat{v}$ ：om．epit．（hab．plen．）
${ }^{35}$ B perhaps took these readings from the related gloss Bekk．v 200.9 （Bekk．v and Harp．share a source in the so－called Onomastikon：Wentzel，GGA 159 （1897）618）．

ג̀фєis каi $\dot{\alpha} \pi \alpha \lambda \lambda \alpha{ }^{\prime} \xi \alpha \varsigma$（Harp．69．1，Bach．170．3，Suda 4599 ，Phot． $\alpha 3319 \mathrm{f}) \tau \iota \varsigma: \tau i \varsigma \tau \iota \nu \alpha$

Errors peculiar to only one of the Σ sources are obviously of no significance here（even less，variations within Suda or Phot．）．But there are some that occur in two of them．

Suda Phot．：B Harp．（prima facie error in $\Sigma^{\prime \prime}$ ）
＇A $\theta \mu \boldsymbol{\mu} \boldsymbol{\nu} \boldsymbol{v} \boldsymbol{\prime}$（Harp．15．7，Bach．37．16，Suda人743，Phot．$\alpha 468$ ）＇A $\theta \mu \omega \nu-$ ： ＇A $\theta \mu \mathrm{\nu} \nu-$
＂Акә（Harp．19．1，Bach．53．29，Suda人858，Phot．$\alpha 744$ ）к $\alpha \lambda о v \mu \epsilon ́ \nu \eta \nu$ ： $\nu \hat{v} \nu \kappa \alpha \lambda o v \mu \epsilon ́ \nu \eta \nu$
á π óф $\alpha \sigma \iota \varsigma$（Harp．52．15，Bach．136．24，Suda人3629，Phot． 2703 ）к α－ $\lambda \epsilon i ̄ \tau \alpha \iota \ldots \dot{\alpha} \pi о \gamma \rho \alpha \phi \eta^{\prime}: \kappa \alpha \lambda \epsilon \hat{\imath} \ldots \dot{\alpha} \pi \sigma \gamma \rho \alpha \phi \eta^{\prime} \nu$
＂А $\tau \tau \eta$（Harp．65．4，Bach．161．20，Suda 4354，Phot． 3130 ）＂A $1 \tau \iota \varsigma$ ： ＂A $\tau \tau \eta \mathrm{s}$
$\dot{\alpha} \phi \mathbf{\rho} \mu \boldsymbol{\eta}$（Harp．69．15，Bach．172．30，Suda人4638，Phot．$\alpha 3378$ ）$\delta \dot{\omega} \sigma \epsilon \iota:$ $\delta \omega \dot{\sigma} \boldsymbol{\eta}$（ $\delta \hat{\omega}$ Harp．plen．）
B Phot．：Suda Harp．（prima facie error in $\Sigma^{\prime \prime \prime}$ ）

Aiviovs（Harp．17．9，Bach．47．4，Suda⿱ı225，Phot．$\alpha 605$ ）к $\tau ч \dot{\kappa} \kappa \eta \sigma \alpha$ ： $\kappa \alpha \tau \dot{\varrho} \kappa \iota \sigma \alpha \nu$
$\dot{\alpha} \pi \epsilon \rho \gamma \alpha \sigma \alpha \dot{\mu} \mu \boldsymbol{\nu} 0$（Harp．44．1，Bach．117．19，Suda人3036，Phot． 2350 ）

ג̇ $\pi \eta \lambda о \eta \mu \epsilon ́ \nu o s$（Harp．44．6，Bach．121．3，Suda人3156，Phot． 2408 ）－： є̇ $\boldsymbol{\tau} \boldsymbol{\tau} \boldsymbol{\varphi} \pi \rho o ̀ s ~ \Phi \alpha i ́ \nu u \pi \pi o \nu$
 $\tau \dot{\alpha} \kappa \iota \beta \dot{\prime} \tau \iota \alpha: \kappa \iota \beta \dot{\omega} \tau \iota \alpha$

B Suda：Phot．Harp．
$\dot{\alpha} \gamma \in \lambda \alpha \hat{\imath} \circ \mathrm{s}$（Harp．4．10，Bach．8．26，Suda α 187，Phot．$\alpha 134$ ）$\dot{\rho} i \beta \delta \eta \nu: \rho \dot{v} \dot{-}$ $\delta \eta \nu$
$\dot{\alpha} \pi$ олєло九то́тєऽ（Harp．47．6，Bach．127．19，Suda人3383，Phot． 2543 ）

3．Conclusions

It should be immediately apparent from the above data that simple solutions will not suffice．If Harpocration had been incorporated in Σ

[^10]at only one point, which would have to be Σ^{\prime}, several difficulties arise. The considerable number of glosses in Suda Phot. but not in B has to be explained; \mathbf{B} may abbreviate on occasion and combine freely, but cannot be shown to have omitted on any scale. Phot. is different in this respect (supra 207 and n.17), so that glosses in B Suda but not Phot. can be readily explained by omission in the latter. Further, the few glosses in B Phot. but not Suda-especially those in $\Sigma^{\prime \prime \prime}$ contexts in B-call for explanation. Next there is the lack of common combinations noted by Adler: only the simplest are found, in $\dot{\alpha} \lambda i \boldsymbol{i} \pi \epsilon \delta \delta \nu$ and $\dot{\alpha} \pi \sigma \pi \epsilon \phi \alpha \sigma \mu \epsilon \dot{\nu} \nu \boldsymbol{\nu}$. Finally, there are the textual alterations in B Suda: 'Iбокр $\dot{\prime} \tau \eta$ s s.v. $\dot{\alpha} \pi о \lambda \epsilon \lambda о \iota \pi o ́ \tau \epsilon s$ might easily be a conjecture by Photius, but that in $\dot{\alpha} y \in \lambda \alpha \hat{i} o s$ is more recalcitrant.
But converse problems are raised by Adler's proposal of independent introduction to the sources. There are considerable overlaps in the glosses included by each, and the errors shared by two of the three are an almost insuperable objection (it will be recalled that Adler fails to mention that Harpocration is included in B). Alpers' suggested compromise of incorporation by Σ^{\prime}, Suda, and Phot. independently does not fully meet the facts either: the glosses found only in B or B Phot. (with a $\Sigma^{\prime \prime \prime}$ context in B) and the errors common to B Phot. remain unexplained.

There is no conclusive evidence that B used Harpocration. ${ }^{37}$ Given that Phot. is extant in an abbreviated state, the three glosses found only in B may have been in $\Sigma^{\prime \prime \prime}$ and omitted in Phot. The larger number in B Suda might be explained by independent use of Harp. by each, but in view of the conjunctive errors in B Suda it is easier again to suppose them to have been in Σ^{\prime} and omitted in Phot.; or to have been in $\Sigma^{\prime \prime \prime}$, omitted in Phot., and added independently by Suda. The handful of cases where B (sometimes with Suda) has a reading also in the full version of Harpocration, while Harp.epit. has another, may also be otherwise explained: s.vv. Aiyєî $\alpha \iota$, 'A $\rho \kappa \tau о \hat{\rho} \rho o s$, and 'Aфv́as the variations are trivial and may be coincidental, while s.v. $\dot{\alpha} \nu \tau \tau \gamma \rho \alpha \phi \eta^{\prime} \mathbf{B}$ may be contaminated with Bekk. v.

Equally it is not clear that Phot. used Harpocration: Phot. by itself has no glosses outside the $\alpha \mu$ - and $\alpha \nu$-sections where $\Sigma^{\prime \prime \prime}$ is not represented also by \mathbf{B}. The reading $\dot{\rho} \dot{v} \delta \eta \nu$ s.v. $\dot{\alpha} \gamma \in \lambda \alpha \hat{\imath} o s$ is the best evidence.

For Suda the case is much stronger: nine glosses not also in B or Phot., and one of these, $\dot{\alpha} \rho \gamma v \rho \hat{\rho} \tau \iota s \gamma \hat{\eta}$, not in the epitome of Harp.

[^11]The glosses that appear in B in $\Sigma^{\prime \prime \prime}$ contexts and are also in Suda are probably to be regarded likewise as separate additions to the latter. Textual agreements with the full version of Harp. are, as already noted, trivial. When Suda agrees with Harpocration, and B Phot. have a variant, the possibility of Suda having by direct use of Harpocration corrected an error of Σ^{\prime} cannot be excluded; but error by $\Sigma^{\prime \prime \prime}$ is at least equally likely.

Use of Harpocration by $\Sigma^{\prime \prime \prime}$ is virtually certain from the occurrence of $\dot{\alpha} \gamma \nu \epsilon \in \epsilon \tau \alpha \iota$ only in B Phot. and decisively in a $\Sigma^{\prime \prime \prime}$ run in B, along with several conjunctive readings. For $\Sigma^{\prime \prime}$ there can be no doubt at all: 22 unique glosses and several conjunctive readings. Equally so for Σ^{\prime}, with the great majority of Harp. glosses common to all sources, and again with conjunctive readings.

It appears therefore that Harp.epit. was used by Σ^{\prime}, which incorporated most of its glosses. Many of those omitted (for whatever reason) were added by $\Sigma^{\prime \prime}$, some others by $\Sigma^{\prime \prime \prime}$. Consultation by Suda (and of a different version) is probable, by \mathbf{B} and Phot. no more than possible. This complicated picture of the repeated use of the same source at several stages in the development of Σ cannot be regarded as inherently unlikely. It is similar to the process Erbse has depicted for the Atticistic lexica. The historical circumstance to be imagined probably involved several scholars producing their own version of this collection of useful words, all working at roughly the same period in Constantinople and using the same limited number of sources.

National Library of Scotland, Edinburgh
June, 1986

[^0]: ${ }^{1}$ Suda A 4014.
 ${ }^{2}$ Heading in mss. D and \mathbf{E} (see infra).
 ${ }^{3}$ E. G. Turner, JEA 38 (1952) 92; B. Hemmerdinger, REG 72 (1959) 107-09.
 ${ }^{4}$ Edited by I. Bekker (Berlin 1833) and by W. Dindorf (Oxford 1853); citations are as is customary by Dindorf's page and line, but the text and apparatus of both editions have been utilised. An edition was planned by Georg Wentzel, whose material was available for the $R E$ article by H. Schultz (VII. 2 [1912] 2412-16).
 ${ }^{5}$ J. J. Keaney, TAPA 100 (1961) 201-07.
 ${ }^{6}$ The variations from the full text can be seen in Dindorf's first apparatus. The substantial agreement of all the sources in selection of glosses, wording of abridgements, and textual details shows that one epitome is in question.
 ${ }^{7}$ Cf. P. Lemerle, Le premier humanisme byzantin (Paris 1971).
 ${ }^{8}$ For a convenient summary of the evidence and literature see K. Alpers, Das attizistische Lexikon des Oros (Berlin 1981) 72 and n. 23.
 ${ }^{9}$ Unpublished. Cf. A. B. Drachmann, Die Überlieferung des Cyrillglossars (Copenhagen 1936), with edition of the sections $\beta \alpha, \theta \alpha-\theta \epsilon, \lambda \alpha-\lambda \epsilon$. A version of this lexicon was incorporated into Hesychius; much information is given in K. Latte, ed., Hesychii

[^1]: Alexandrini Lexicon (Copenhagen 1953-). An edition of Cyril was being prepared by the late Mark Naoumides.
 ${ }^{10} \alpha$ is printed from A by C. Boysen, Lexici Segueriani $\Sigma \nu \nu \alpha \gamma \omega \gamma \dot{\eta} \lambda \epsilon \in \xi \in \omega \nu \quad \chi \rho \eta \sigma i \mu \omega \nu$ inscripti pars prima (Marburg 1891-92, reprinted in Lexica graeca minora [Hildesheim 1965] 12-60 [hereafter 'Boysen']), the remainder from B by L. Bachmann, Anecdota graeca I (Leipzig 1828 [hereafter 'Bach.']) 178-422.
 ${ }^{11}$ Berlin 1814. These are entitled, respectively, $\Delta \iota \kappa \omega \hat{\nu}$ ò $\nu o ́ \mu \alpha \tau \alpha$ [hereafter 'Bekk. IV'] and $\Lambda \epsilon \in \xi \epsilon \iota \varsigma \rho \eta \tau о \rho \iota к а i ́$ ['Bekk. v'].
 ${ }^{12}$ Such as a precursor of B, which contains, in addition to Σ, Apollonius, Phrynichus, Timaeus, the Antiatticist, and Bekker IV and \mathbf{v}.
 ${ }^{13} \alpha$ in the manuscript \mathbf{B}.
 ${ }^{14}$ Suidae lexicon, A. Adler, ed. (Leipzig 1928-38).
 ${ }^{15}$ Photii patriarchae lexicon, C. Theodoridis, ed. (Berlin 1982-).
 ${ }^{16}$ This is a very brief summary of a complex matter, intended only as essential background. Less important manifestations of Σ, as in Paris Suppl.gr. 1243 and the scholia on Plato and Lucian, and controversial ones, such as the $\dot{\rho} \eta \tau \boldsymbol{\rho}$ скóv used in the Etymologicum genuinum, are ignored. For further details see G. Wentzel, reviewing Boysen's edition, GGA 155 (1893) 27-46, and "Beiträge zur Geschichte der griechischen Lexikographie," SitzBerlin 1895, 477-87 (reprinted in Lexica graeca minora 1-11); R. Reitzenstein, Der Anfang des Lexikons des Photios (Leipzig 1907) xxix-liii; K. Latte, Hermes 50 (1915) 376; A. Adler, RE IVa.1 (1931) 675-717 s.v. "Suidas"; H. Erbse, Untersuchungen zu den attizistischen Lexika (Berlin 1950) 22-34; K. Alpers (supra n.8) 56-79; Theodoridis (supra n.15) I xxxv-lx, Ixxii-lxxvi, and GGA 235 (1983) 189-209.

[^2]: ${ }^{17}$ This is the traditional view, formulated by Reitzenstein and elaborated by Erbse. Alpers, BZ 64 (1971) 80, argued that Erbse does not prove the the existence of Σ^{\prime}; this may be so for the Atticistic glosses, with which Erbse is concerned, but cannot be maintained in general; what is needed is an explanation of the numerous glosses that appear in B Suda Phot., but not in A (C).
 ${ }^{18}$ Theodoridis (supra n.15) I lxi-lxxi.
 ${ }^{19}$ GGA 155 (1893) 28; SitzBerlin 1895, 480.
 ${ }^{20}$ Supra n 16: xxxiv-xxxix.
 ${ }^{21} G G A 185$ (1923) 28; RE (supra n.16) 692f.
 ${ }^{22}$ Supra n.16: 24 n. 3.
 ${ }^{23}$ Supra n.16: 73 n. 25 .

[^3]:

 56.15 ＇Apıß $\alpha \rho \zeta \alpha \dot{\alpha} \nu \eta$（ 0 mitted by \mathbf{E} according to Bekker，who does not give a full report of \mathbf{D} ；Dindorf is silent）， 57.12 ＇Apiotvana， 68.18 ＇A $\alpha \alpha \rho \epsilon u ́ s . ~ F o r ~ a ~ p o s s i b l e ~ e x-~$ planation of some of these omissions see J．J．Keaney，GRBS 14 （1973） 418.
 ${ }^{25}$ The addition in Phot．，which resembles Harp．，is most likely from Diogenianus；cf． Hesychius $\alpha 4636$ ．
 ${ }^{26}$ I am not aware of any general discussion of this，and I have not myself collected examples．One simple case that has come to my attention is this：the Σ gloss $\dot{\epsilon} \mu \pi i \boldsymbol{s} \cdot$ $\kappa \dot{\omega} \nu \omega \psi$（Bach．218．5）is not in Suda，unlike the vast majority of Σ glosses．Instead Suda $\epsilon 1020$ has $\dot{\epsilon} \mu \pi i \boldsymbol{\prime} \cdot \kappa \dot{\nu} \nu \omega \psi \iota \pi \alpha \rho \alpha \pi \lambda \dot{\eta} \sigma \iota \nu$ from an Aristophanic scholium．
 ${ }^{27}$ Reitzenstein（supra n．16）xxxiii．

[^4]: ${ }^{28}$ Perhaps to be removed．Phot．$\alpha 2090$ may be an abbreviated version of the Harp． gloss，while Bach． 104.26 may be a contamination of it and Bekk．v．
 ${ }^{29}$ This may belong below：Bach．108．15，Phot．$\alpha 2183$ are from Bekk．v，but Bach． seems to be contaminated with Harp．

[^5]: ${ }^{30}$ Reitzenstein (supra n .16) xxxiii-xlii.

[^6]: ${ }^{31}$ Supra n.16: xxxi.

[^7]: ${ }^{32} 2716 \mathrm{f}$ appear to be placed according to the antistoechic order used in Suda, of which there are traces elsewhere; cf. Adler (supra n.16) 679.

[^8]: ${ }^{33}$ I need not consider the vexed question of Etym．Gen．；see Alpers（supra n．16）76； Theodoridis（supra n．15）xl－xliv．

[^9]: ${ }^{34}$ Two mss. of the full Harp. have the same as Suda, but omitting toviza . . . $\Delta \eta \mu_{0}-$ $\sigma \theta \in \dot{\epsilon} \nu \nu$ at the end of the gloss: interpolated from Suda?

[^10]: ${ }^{36}$ This is not quite the same as the other cases：the correct $\dot{\text { éroinovs is also in Harp．}}$ plen．，so that the error is due to Harp．epit．and was taken over by Σ^{\prime} but corrected by $\Sigma^{\prime \prime}$ ．

[^11]: ${ }^{37}$ There is no distinction to be drawn here between B itself and any intermediary there may have been between it and $\Sigma^{\prime \prime \prime}$. The same applies, mutatis mutandis, to what is said below about Phot. and Suda.

