Five Men and Ten Ships:

A Riddle in Athenaeus

Mark Stephen Caponigro

For the following riddle we find no certain solution in ancient sources, and the few modern guesses are not convincing:

Five men with ten ships came to land at one place; they did battle amidst stones, but no stone could be lifted; for thirst they perished, but the water rose over the chin.
The riddle is found in Athenaeus' Deipnosophistae (457 в); in the anonymous scholia to Hermogenes' Peri ideon (VII. 2 949f Walz); then in two composite codices, Paris.gr.suppl. 690 (s. XI-XII) ${ }^{1}$ and Laurent.Plut. 32.16. ${ }^{2}$ Finally, the second line of the riddle appears in Plutarch's Quaestiones conviviales ($660 \mathrm{D}-\mathrm{E}$).
It is surprising that Athenaeus, who gives adequate explanation for most of the $\gamma \rho i \phi o \iota$ and sympotic puzzles that are assembled in his

[^0]tenth book, gives not a clue to what lies behind our riddle, prefacing it only with the epithet $\pi \epsilon \rho \iota \phi \epsilon \rho \rho_{\mu \epsilon \nu} \mu \nu$, 'well known', 'celebrated'. ${ }^{3}$ The few philologists who felt the lack of a solution so keenly as to be moved to suggest solutions of their own have in fact not suggested anything altogether satisfying. It is the purpose of this paper to show that a more substantial advance along this little-visited frontier of classical scholarship may be possible.

We may begin by reviewing the earlier efforts to solve our riddle. ${ }^{4}$ The would-be solvers can be divided into two groups, those who take 'men' and 'ships' strictly to indicate men and ships (the literalist approach), and those who do not. The numbers five and ten ought to declare at once that the riddle is not really about men and ships in those impossibly related quantities. The first group of solvers did not think so, however, and devised two strategies for dealing with the number problem. Dalechamp's strategy was to understand five admirals ("classis praefecti") on ships that had besides their normal complement of sailors. ${ }^{5}$ The scene he supposed was of two fleets joining battle, slinging stones at each other with catapults, stones which naturally could not be picked up at sea; and the marines, toiling in the strife, must endure both an awful thirst and the rising of the sea-water over their sinking ships. But if $\kappa \alpha \tau \epsilon \delta \rho \alpha \mu \rho \nu$ must mean something like 'came to land' (cf. LSJ s.v. к $\alpha \tau \alpha \tau \rho$ é $\chi \omega$ I.2, 'run to land', 'disembark'), and if $\chi \hat{\omega} \rho o \nu$ only denotes a place on dry land, not a vague location on the surface of the sea, then the idea of a naval battle is not defensible. As for the numbers of craft and personnel involved, five "classis praefecti" seem rather more than we might expect to find in a single action, and ten ships fewer.

Otto Probst accepted Dalechamp's basic scenario, the naval battle and its aftermath, but found in it a further hidden meaning. ${ }^{6}$ The riddle, he thought, was Athenaeus' second example of a kind of verse that puns or plays with a proper name, as does the trimeter that

[^1]just precedes it. ${ }^{7}$ The name in this case is Tantalus, and Probst discovered an allusion to that name in each of the riddle's three lines. He paraphrased the first line, $\tau(o i) \not{ }_{\alpha} \nu \tau(\alpha) \not{ }_{\alpha} \lambda \lambda \iota o$, 'the seamen at odds'; the second, $\tau \alpha \nu \tau \alpha \lambda o \hat{v} \sigma \iota$, 'swing (and sling) stones', an enigmatic reference to one of the traditional punishments of Tantalus, the impending rock (cf. Pind. Ol. 1.57f); the third, Táv $\tau \alpha \lambda o \iota$, no doubt because all in the company of ship-wrecked sailors are forced to play the rôle of Tantalus suffering his other traditional punishment, thirst (and hunger) that cannot be satisfied by abundance at hand (cf. Od. 11.582-92). This interpretation, strained at every point, has little to recommend it. Not the least of its difficulties is Probst's frank denial that the numbers five and ten have any real significance.

The other literalist strategy is to reverse the numbers: ten men and five ships. It was first proposed by Hermann Hagen, 8 then accepted by Konrad Ohlert ${ }^{9}$ and Hermann Diels. ${ }^{10}$ But it may be doubted whether, in Greek riddles at least, numerical quantities and their relations are ever made the locus of deception, as such a perverse reading would require. ${ }^{11}$ In any case an ancient ship, certainly an ancient warship, would not likely have gotten along much better with a crew of two than with a crew of one-half. Diels' suggestion seems to have received

[^2]Here $\Delta \omega \mu \dot{\eta} \delta \eta \rho$ and $A \check{\omega} \alpha \rho$ at first glance look nominative, but the sentence only makes sense if they are taken as different names in the genitive case. Diels would support the switch of five and ten in our riddle by comparing the Cyclic epic verse quoted by Aristotle (Soph.El. 166a35), in which the numbers could be counted in either of two ways:
 even if their language is.
the approval of C. B. Gulick, Athenaeus' Loeb translator. Following the interpretation found in the Paris codex, he changed the situation from a naval battle to a shipwreck on a reef. That may work to explain the second line. But the objections to how he deals with the first line remain; and his key to the third line, that 'water over the chin' is really sea water scooped by the thirsty sailors over their shoulders as they bail out the punctured hulls, does not quite fit the required idea that they are sunk far deeper than where bailing might help.

The literalist approach seems especially unattractive in view of what so many of the riddles in Anth.Pal. XIV demonstrate to have been the preferred aesthetic. That involved an utter discontinuity between the scene, or scale, or reference point of the riddle itself, and that of the solution. So Anth.Pal. 14.5:

The answer is smoke. To discover it, we must give up the images suggested by the zoological terms, alter the idea of birth to another kind of causation, and understand in a different way even those words the literal meaning of which can be retained: the colors, winglessness, the clouds, the tears, the air. Other cases of birth imagery needing to be reinterpreted are found in Anth.Pal. 14.41 and 42:

The answer to 41 is Day following Night (or vice versa); to 42, the date-palm. Even less can be taken literally in these than in 14.5. On the other hand, in 14.19, though only one word, $\tilde{v} \lambda \eta s$, and perhaps another, $\gamma \alpha i \eta s$, require reinterpretation, yet the picture that the solution suggests is quite different from that produced by the unsolved text itself:

The answer is a louse.
The second group of solvers is less numerous, but includes the great names of Joseph Scaliger and Isaac Casaubon. ${ }^{12}$ Scaliger thought

[^3]the five men were boxers and the ten ships were their fists; they boxed on a paved floor where the paving stones could not be lifted; the water over the chin was their sweat. But the odd number of boxers is inept, since boxing matches as a rule require boxers in pairs. So Casaubon changed the event to running; the number of runners may be either odd or even, and their 'ships', their vehicles of transportation, are their shoes. However, 'did battle' is not so good for a contest of runners as of boxers. Also, the Panathenaic vases normally show runners without footwear; and the running surface of the ancient stadium was not usually paved.

The imagination of Scaliger and Casaubon was more liberated than that of the literalists. But the solutions of both groups share an undesirable feature. They are arbitrarily complicated, drawing on situations either known to very few or altogether surreal, such as no respectable mind with a standard fund of knowledge could be expected to recall. Dalechamp's answer is, not just a sea-battle involving catapults and wrecks, but one in which ten ships took part, commanded by five admirals. Where do those numbers come from? Casaubon's answer is, not just a footrace, but one in which the runners wore shoes and ran on a pavement. Where do we know of that peculiar athletic custom? Such solutions are fabricated, not guessed.

We may contrast with this indulgence in over-complication the two epigrams attributed to Simonides at Athenaeus 456c-e. To be sure, these cannot be understood without knowledge of a kind hard to come by, in each case some peculiar experience of the poet. But they were addressed to people who were surely well acquainted with that experience, if not also actually sharing it; and the purpose of the enigmatic diction is to give an effect of learning and elegance, not to puzzle. Worse was the riddle of Samson at Judges 14.14:

Out of the eater came something to eat.
Out of the strong came something sweet.
It was inspired by the rare sight of a lion's carcass sheltering a hive of bees, honey-combs and all, and of course it flummoxed Samson's Philistine in-laws. But that was the point. We should assume that our riddle was neither designed as a weapon, nor intended for intimates only, but an amusing diversion in which many could share. Even if we-or the ancient banqueters-might figure out, step by step, an answer such as Dalechamp or Casaubon gave, where would be the fun in arriving at anything so improbable? With a good riddle, as with certain detective stories, once we have got the answer it should appear obvious, at least in retrospect.

Scaliger and Casaubon showed very good sense when they saw that ten is twice five, and knew that that must mean something. Hence in their solutions, the 'ships' stand for things that men naturally have in pairs. There is in fact another riddle, Anth.Pal. 14.14, comparable to ours inasmuch as it has in it ships and numbers in significant relations:

The answer is the aủdós or double flute. The flautist is the pilot of both flutes at once, his breath is the wind, his fingers the rowers. It shows that when a riddle speaks of ships, there is no need to put ships into the solution as well; but when it gives specific numbers of things, that is not done merely for convenience. The solution that I should now like to propose for the $\pi \epsilon \dot{\epsilon} \nu \tau^{\prime} \ddot{\alpha}^{\prime} \nu \delta \rho \epsilon$ s riddle is enough like the double flute solution, as well as like the simple, down-to-earth answers to many of the riddles in Anth.Pal. XIV, that I am encouraged to think it may be right. ${ }^{13}$

It goes like this. The five men in ten ships are five nuts just released from their shells. These must be of a kind that, when opened, do not need to be shattered but can be split without difficulty into two symmetrical halves. So there are five kernels of nuts, and ten half-shells, exactly the sort of natural arrangement that the riddle's numbers require. Hazelnuts and chestnuts do not have shells of this kind; but almonds (Prunus amygdalus) and pistachios (Pistacia vera) do, and both are cultivated in the eastern Mediterranean region.

The resemblance of the half-shells of nuts to the hulls of ships, as well as their buoyant nature, was observed by Lucian; in his True History (2.37f) we read of the K $\alpha \rho v o \nu \alpha \hat{v} \tau \alpha \iota$, 'Nut-sailors', whose vessels are кєлv́фф $\kappa \alpha \rho \dot{v} \omega \nu \dot{\eta} \mu \dot{\prime} \tau о \mu \alpha \kappa є \kappa \in \nu \omega \mu \in ́ \nu \alpha$. The half-shells of pistachios remain more even around the edge after splitting than those of almonds, and so would make finer ships. But they are rounder too, suggesting merchantmen rather than men-of-war. Therefore the nut that is here intended is more likely the longer and flatter almond.

[^4]Moreover, Athenaeus' lengthy discussion of the almond, beginning at 52 c , would imply that that was the nut of choice at the Greek banquet table. Hermippus, whose hexameter catalogue of the products of various cities is given in Athenaeus' first book ($27 \mathrm{E}-28 \mathrm{~A}$), praises the almond with Homeric exaltation:

At Odyssey 1.152 it is $\mu 0 \lambda \pi \dot{\eta}^{\prime} \tau^{\prime} \dot{\mathbf{o}} \rho \chi \eta \sigma \tau \tau^{\prime} \boldsymbol{s} \tau \epsilon$ that are called "delights of the feast." But for Hermippus and his post-Iron-Age society of consumers, supper was not complete without almonds (and hazelnuts), ${ }^{14}$ an expected treat.
The men made landing at one place; so, the almonds, their halfshells left behind, come to one place, the mouth, or perhaps better the tongue, of the one who intends to eat them. The stones that cannot be lifted are the teeth, and it is among them that the almonds suffer the battle-like violence of being chewed. The intransitive, imperfect $\dot{\epsilon} \mu \dot{\alpha} \chi o \nu \tau o$ suggests vague friction, reduction, and turmoil, continuing over a period of time, as the almonds are tossed over and about one another in a kind of warfare.

The end of the almonds comes in line 3. They perish for thirst, not their own, of course, but of the person who is eating them. Therefore what follows is to be transformed from concession to explanation: the almonds perish because of the draught of water that rises over the (now thirsty) man's chin and pours into his mouth.

A not dissimilar shift of reference point, in a similar context, makes clear a difficult expression in Anth.Pal. 14.23:
 $\tau o ̀ \nu \Sigma \tau v \gamma o ̀ s ~ i \mu \epsilon \rho \tau o i ̂ s ~ \nu \alpha ́ \mu \alpha \sigma \iota ~ \delta v o ́ \mu \in \nu o \nu$.
A son of Earth bears me, who am child of Nereus, and sink in the delightful streams of Styx.
How can the water of Styx be called delightful? The speaker of this riddle is a fish on a dish, lying in its juice; the juice is "called Styx because the fish is dead" (W. R. Paton in the Loeb), but at the same time is a thing of relish to those dining on it. The "sweet death" of Anth.Pal. 14.36 must follow the same idea.

The fatal thirst is not hard to understand. All bartenders, and of their patrons those who are more than usually perceptive, know that

[^5]eating nuts and other salty nibbles brings on a thirst. And Athenaeus knows that this is especially true of almonds, the bitter ones (52d):

סíסov $\mu \alpha \sigma \hat{\alpha} \sigma \theta \alpha \iota$ N $\alpha \xi i \alpha s$ à $\mu v \gamma \delta \dot{\alpha} \lambda \alpha$,
oí $\nu o ́ \nu \tau \epsilon \pi i \nu \epsilon \iota \nu \mathrm{~N} \alpha \xi \dot{\xi} \dot{\prime} \omega \nu \dot{\alpha} \pi \pi^{\prime} \dot{\alpha} \mu \pi \epsilon \dot{\lambda} \lambda \omega \nu$ (fr. 253 K .).

He continues with a story showing how one can actually drink more after having consumed some bitter almonds beforehand:

> And Plutarch of Chaeronea says that a certain physician in the company of Drusus, son of Tiberius Caesar, who had outdone everyone in drinking, was detected before the drinking bout eating five or six bitter almonds; when he was prevented from taking them, he held out for not even the least part of the bout. The quality of bitterness is the explanation, then, which causes things to dry up, and consumes what is moist.

The Plutarchan place is Quaestiones conviviales (624-25); after the episode concerning Drusus' learned guest there follows a discussion of what could be called the biochemistry of bitter foods, why they induce thirst. The preferred explanation is that what is bitter will act as a desiccant:

A great proof of this explanation is what happens in the case of foxes; for, when they have eaten bitter almonds, if they do not also drink, their fluids are all at once removed, and they die.
Pliny as well as Plutarch associates the bad luck of certain foxes with symposiac prudence, in his list of the properties and uses of amygdalae amarae (HN 23.145): aiunt quinis fere praesumptis ebrietatem non sentire potores, vulpesque, si ederint eas nec contingat e vicino aquam lambere, mori.
According to these sources, five almonds is virtually a prescribed amount for the serious drinker. Whether they were taken one at a time or, less delicately, all at once, the five were surely consumed all at a single point in the course of the drinking party, and would easily be thought therefore to be present in the almond-eater's mouth at the same time.

It may be thought objectionable that by the end of line 2 , the almonds will have been chewed up and therefore all but swallowed; but in line 3 they can still be spoken of as integral figures, and the almond-eater still needs water to swallow them, as if they were so many whole aspirins, bitter and unchewable. But no more is this implication necessary than does our English expression 'to wash down (food) with (drink)' mean that the food remains unswallowed until
the cataclysmic draught. It is after all very easy to comprehend the three closely related acts-eating (and swallowing) nuts, perceiving thirst, drinking - as a single, almost momentary process, in which the last act presses hard on the first.
A strain of this kind can be admitted without great embarrassment. The logic of riddles will always have to strain somewhat to make very different kinds of things analogous; and once the moment of the answer's revelation has passed, it rarely or never endures very close scrutiny. Anth.Pal. 14.14 can be compared in this regard. The propulsion of a ship does not require both wind and rowers at once, yet both the flautist's breath and his fingering are certainly needed for music to come from the flute; the steady breath of wind that puffs the sail and the uniform back-and-forth motion of the oars are quite unlike the necessarily varied rhythms of the flautist's breath and the separate application of his fingers to the stops; and the flautist is curiously divided into breath, fingers, and intellectual faculty.

A difficulty of a different sort comes with Plutarch's citation of the riddle's second line at Quaestiones conviviales 660D. The context, at the beginning of a dialogue "On diverse foods," is this. On the occasion of a feast, the narrator with others is entertained by Philon. The fare at his table is exuberant, and perhaps not thoughtfully selected-
 was brought up an austere vegetarian, eats nothing but bread. Philon

So saying, he rushes off to get some figs and cheese.
Has Plutarch preserved here something of the riddle's real solution, one having nothing to do with almonds? His character Philon speaks as though he has suddenly discovered the correct interpretation of the line. He apparently believes that it refers to persons who prefer a rather plain diet, and refuse the rich food set before them. Not very interesting, and hardly what we should expect to have inspired a riddler, but not impossible. Ohlert and Diels compare the modern expression, 'not to see the forest for the trees'; we may doubt whether that is just what Philon means, but Ohlert and Diels at least are satisfied that Philon is saying something sensible. The important point to notice here is that Philon seems never to have thought of this interpretation before he saw his little guest feeding on bread. There is nothing to suggest that Philon's interpretation is traditional. His exclamation should be translated, "So that is what the saying means, 'And amid stones ...'" The particle ${ }_{\alpha}^{\alpha} \rho \alpha$ in combina-
tion with a past tense verb indicates apprehension "at the moment of speaking or writing"; it is used "with the imperfect, especially of $\epsilon i \mu \mu^{\prime}$, denoting that something which has been, and still is, has only just been realized." ${ }^{15}$ Philon's interpretation, then, is certainly a guess, and not a traditional solution which we must consider correct.

The Plutarchan citation of the riddle's second line perhaps involves a further difficulty. If, what cannot be proved, Plutarch knew the entire text of the riddle, and if the solution is in fact almonds, then might we have expected him to refer to it in his earlier discussion of bitter almonds (624 c , cited above)?

There are four possible explanations for the absence of the riddle from that discussion. (1) Plutarch knew just the single line that Philon utters. (2) He knew the entire riddle, but did not know its solution. (3) He knew both the riddle and its solution; and the solution has nothing to do with almonds. (4) He knew both the riddle and its solution; the solution is in fact almonds; but for any of a number of reasons he chose not to include it in the earlier discussion, or it did not occur to him to include it. There is no obvious reason why the third explanation, the only one we cannot accept, should be preferred to all the others. In connexion with the fourth, we may observe that the almond discussion consists of an historical anecdote and a series of suggestions of a scientific nature. Something so undignified as a riddle would not fit easily into such a context; and if Plutarch did indeed have the riddle in mind at that point, it is quite comprehensible why he would not have wished to include it.

There is a good chance that the second explanation is the correct one. For to someone ignorant of the riddle's solution, the third line might prompt an interpretation like Philon's. One need not subscribe to the eccentric idea of Probst to find in that line a reminiscence of half of Tantalus' Homeric punishment, a terrible thirst that abundant water at hand may not quench. Even the words are similar (Od. 11.582-84):

Line 583 and the riddle's third line both end with 'chin', and in both places it is the object of a verb whose subject is either water or a synonym for water; thirst appears, the noun itself in the riddle, and in the form of a participle in 584; the infinitives ending 584 and the

[^6]riddle's second line are all but identical, and used in similar constructions. It would not be a bad guess at all then to relate the second line to Tantalus' other Homeric punishment, going hungry in the midst of plentiful food (cf. 11.588-92).

On the other hand it would suit the congenial tone of the piece better if Plutarch's character were taking only a playful stab at the well-known riddle, celebrated for its lack of a generally accepted solution. Philon seems to use a typical method of riddle-crackers, to strike at a vulnerable-looking detail; many who had attempted this riddle before would recognize it as their own, and be amused. Also, just as wags will often take an expression from its context and exact from it in its new location a meaning it could never normally have, to humorous effect, so here Plutarch may be re-applying the single line, a cleverness quite appropriate to his sophisticates' table-talk.

If, however, despite its appearance of frivolity, Philon's guess be accepted as actually correct - perhaps on the grounds that the guess of one closer in time, language, and culture to the riddle's origin is more likely to be correct than ours-might it not hold some clue to solving the riddle as a whole? Granted that the second line is about guests at a banquet who for reasons of health, habit, or piety refuse what is served them, then in the third line are they refusing wine, quenching their thirst only with water? And in the first line, is each diner's pair of ships his plate and cup? That may be, for all its complication. But the difficult objection recurs: are the numbers five and ten explained adequately? Is the careful choice of that arrangement, one number the double of the other, really appreciated? In particular, how can the subject of abstinence be reconciled with so specific a number of guests? ${ }^{16}$ Without the answers to these questions, there is no way to proceed from Philon's guess to a convincing answer for the whole riddle.

For such an answer must be founded first of all on the realization that the numbers five and ten were chosen by the riddler with care.

[^7]They must indicate some natural relation between two kinds of things, according to which there are as a rule exactly twice as many of one as of the other. Philon's guess is no help in this regard. We saw that Scaliger and Casaubon understood this principle, but their solutions had to be dismissed for other reasons. On the strength of this same principle, then, no solution seems sounder than the one that has been argued here. The five men with ten ships are nothing other than almond-kernels out of their split shells, confronting tongue and teeth, bringing thirst on the one who is eating them, perishing utterly when he takes a drink. ${ }^{17}$

Columbia University

August, 1984

[^8]
[^0]: ${ }^{1}$ For the reference to C. Dilthey's edition, and H. Diels' use of the interpretation found therein, see Diels, "Die Lösung eines Rätsels bei Athenaeus," BBG 54 (1918) 29.
 ${ }^{2}$ The riddle is found on $\mathrm{f} .380^{\mathrm{v}}$ of this famous codex. The ff. $361^{\mathrm{r}}-391^{\mathrm{v}}$ are written in the hand of Manuel-Maximus Planudes; cf. Alexander Turyn, Dated Greek Manuscripts of the Thirteenth and Fourteenth Centuries in the Libraries of Italy I (Urbana/Chicago/ London 1972) 31. There are readings at variance with the Athenaean text: line 1,
 any real way. The Laurentian text was published twice, first by Nicholas Sava Piccolos, Supplément à l'Anthologie grecque (Paris 1853) 192, then by Robert Hercher, Hermes 2 (1863) 224. Edouard Cougny incorporated Piccolos' reading into his own supplement to the Anthology, Anthologia Graeca III (Paris 1890) 7.31. Piccolos, who was relying on the intervening copy of his correspondent in Florence, Francesco del Furia, had incorrectly printed $\gamma^{\prime} \nu \in \omega \alpha$; and Georg Kaibel, in his edition of Athenaeus (Leipzig 1887), incorrectly printed this as the reading of an independent source, believing that Piccolos had seen the riddle in some Parisian codex. Without actually seeing the Laurentian codex, we can safely prefer Hercher's text to Piccolos' for three reasons: first, the intervention of a copy between codex and published text allowed an opportunity for corruption; second, since the word seems to denote really five chins, a change from an original singular to a plural form would be easier than the reverse; third, Hercher's reading is closer to that of the Athenaean text.

[^1]: ${ }^{3}$ Nor is the larger context helpful. The riddle comes fifth and last in a series of explanation-begging verses starting at 456c, where an epigram of Simonides is called $\gamma \rho \iota \phi \dot{\omega} \delta \eta$, "enigmatic in character" (C. B. Gulick in the Loeb). What the distinctive quality of this series might be is not easy to determine.
 ${ }^{4}$ Two aenigmatologists who included the riddle in their studies but did not attempt to solve it may be mentioned here: J. B. Friedrich, Geschichte des Räthsels (Dresden 1860) 185f no. 72, and Wolfgang Schultz, Mythologische Bibliothek III Rätsel aus dem hellenischen Kulturkreise (Leipzig 1910) 28 no. 10. Evidently they did not find any of their predecessors' solutions persuasive, for they endorsed none.
 ${ }^{5}$ J. Dalechamp, Athenaei Naucratitis Deipnosophistarum libri quindecim (Leiden 1583) 341, also quoted by Johannes Schweighäuser, Animadversiones in Athenaei Deipnosophistas V (Strasbourg 1804) 594.
 ${ }^{6} B B G 53$ (1917) 294f.

[^2]: ${ }^{7}$ That connexion is not strictly impossible; but see supra n. 3 .
 ${ }^{8}$ Antike und mittelalterliche Räthselpoesie (Biel 1869) 17.
 ${ }^{9}$ Rätsel und Gesellschaftspiele der alten Griechen (Berlin 1886) 88 f .
 ${ }^{10}$ Supra n. 1.
 ${ }^{11}$ The tendency in Greek riddles is to secure the quantity of a particular element as reliable, even though the value of the element is itself doubtful. Thus Cougny (supra n.2) 7.23 :

 кои́р ${ }^{\text {'І }} \boldsymbol{\kappa} \alpha$ ріоь $\pi \epsilon \rho і ф \rho \omega \nu ~ П \eta \nu є \lambda о ́ \pi \epsilon \iota \alpha, ~$

 The second line describes, not a pseudo-Homeric monster, but the first line itself, an hexameter of which three feet are dactyls. Another example is the most famous of all
 ove $\mu i \alpha \phi \omega \nu \dot{\eta}, \kappa \alpha i \quad \tau \rho i \pi \sigma \nu .$. . Here again there is no confusion over the numbers themselves. And in general we might observe that there is little amusement or satisfaction in a solution which depends on the shuffling around of indeclinable adjectives; it even seems unfair, if word order, all that determines the agreement of such adjectives, is no longer to be trusted. A much better game with uncertain forms of words, because the possibilities are not out of control, is afforded by Anth.Pal. 14.18:

[^3]: ${ }^{12}$ For the interpretations of Scaliger and Casaubon, see Schweighäuser (supra n.5).

[^4]: ${ }^{13}$ In "Michael Psellus and the Date of the Palatine Anthology," GRBS 11 (1970) 347f, Alan Cameron compared the two ship riddles, and showed that they very probably stood together in a source common to the riddle collection in Laurentianus 32.16 and the riddle section in Anth.Pal. XIV. The compiler of the former collection (Planudes) took one, the compiler of the latter took the other of the pair from that source. We can see at a number of places in Anth.Pal. XIV that riddles have been juxtaposed, sometimes because their solution is the same, but sometimes also because the texts of the riddles have something in common: so 27 and 28 both make references to the sea; 60 speaks of wood as mother, 61 of a tree. The two riddles about ships, sailors, and numbers have indeed more in common than most of these other partners.

[^5]: ${ }^{14}$ 'Zeus-acorns' are probably not real acorns, most unpleasant fare, but hazelnuts or
 Gulick's note in the Loeb.

[^6]: ${ }^{15}$ J. D. Denniston, The Greek Particles ${ }^{2}$ (Oxford 1954) 36.

[^7]: ${ }^{16}$ Alan Cameron has shown me what is perhaps the only ancient passage to give six as the preferred number of diners, five guests and their host; it is Ausonius, Ephemeris 5.5-6:
 quinque advocavi; sex enim convivium
 cum rege iustum: si super, convicium est.
 But there was also a proverb, using the same pun, and with different numbers: septem convivium, novem vero convicium; it is called notissimum dictum de numero convivarum in the Historia Augusta (L. Verus 5.1). David Magie, the Loeb editor, found that puzzling, since "all the evidence, both literary and monumental, shows that nine was the normal number." Varro's rule, as Gellius quotes him ($N A$ 8.11.2), was the most flexible: the guests should not be fewer than the three Graces, not more than the nine Muses.

[^8]: ${ }^{17}$ I acknowledge most gratefully Alan Cameron's great part in the creation of this paper. It was he who encouraged me to pursue this project when first I proposed my solution to him; and he was always generous with his assistance as the paper was being composed.

